Web design career - design

Web design career - design

Web design career - design

Web design encompasses many different skills and disciplines in the production and maintenance of websites. The different areas of web design include web graphic design; interface design; authoring, including standardised code and proprietary software; user experience design; and search engine optimization (Seo services). Often many individuals will work in teams covering different aspects of the design process, although some designers will cover them all. The term web design is normally used to describe the design process relating to the front-end (client side) design of a website including writing mark up. Web design partially overlaps web engineering in the broader scope of web development. Web designers are expected to have an awareness of usability and if their role involves creating mark up then they are also expected to be up to date with web accessibility guidelines.

Skills and techniques

Marketing and communication design

Marketing and communication design on a website may identify what works for its target market. This can be an age group or particular strand of culture; thus the designer may understand the trends of its audience. Designers may also understand the type of website they are designing, meaning, for example, that (B2B) business-to-business website design considerations might differ greatly from a consumer targeted website such as a retail or entertainment website. Careful consideration might be made to ensure that the aesthetics or overall design of a site do not clash with the clarity and accuracy of the content or the ease of web navigation, especially on a B2B website. Designers may also consider the reputation of the owner or business the site is representing to make sure they are portrayed favourably.

User experience design and interactive design

User understanding of the content of a website often depends on user understanding of how the website works. This is part of the user experience design. User experience is related to layout, clear instructions and labeling on a website. How well a user understands how they can interact on a site may also depend on the interactive design of the site. If a user perceives the usefulness of the website, they are more likely to continue using it. Users who are skilled and well versed with website use may find a more unique, yet less intuitive or less user-friendly website interface useful nonetheless. However, users with less experience are less likely to see the advantages or usefulness of a less intuitive website interface. This drives the trend for a more universal user experience and ease of access to accommodate as many users as possible regardless of user skill. Much of the user experience design and interactive design are considered in the user interface design.

Advanced interactive functions may require plug-ins if not advanced coding language skills. Choosing whether or not to use interactivity that requires plug-ins is a critical decision in user experience design. If the plug-in doesn't come pre-installed with most browsers, there's a risk that the user will have neither the know how or the patience to install a plug-in just to access the content. If the function requires advanced coding language skills, it may be too costly in either time or money to code compared to the amount of enhancement the function will add to the user experience. There's also a risk that advanced interactivity may be incompatible with older browsers or hardware configurations. Publishing a function that doesn't work reliably is potentially worse for the user experience than making no attempt. It depends on the target audience if it's likely to be needed or worth any risks.

A study by Longo et al. introduced the construct of Human Mental Workload (HMW) in Web design, aimed at supporting current interaction design practices. An experiment has been conducted using the original Wikipedia and Google web-interfaces, and using two slightly different versions. Three subjective psychological mental workload assessment techniques (NASA-TLX, Workload Profile and Subjective Workload Assessment Technique) with a well-established assessments usability tool (System Usability Scale) have been adopted. T-tests have been performed to study the statistical significance of the original and modified web-pages, in terms of workload required by typical tasks and perceived usability. Preliminary results show that, in one ideal case, increments of usability correspond to decrements of generated workload, confirming the negative impact of the structural changes on the interface. In another case, changes are significant in terms of usability but not in terms of generated workloads, thus raising research questions and underlying the importance of Human Mental Workload in Interaction Design.


Another research conducted by Longo et al. (2012)  introduced the concept of mental Workload  as an aid to enhance usability measurement. A user-study has been designed and executed in the context of human-web interaction. The aim was to investigate the relationship between the perception of usability of three popular web-sites, and the mental workload imposed by a set of typical tasks executed over them. Scores obtained with the System usability scale were compared to the mental workload scores obtained from the NASA-TLX and the Workload Profile assessment procedures. Findings suggest that perception of usability and mental workload are likely to be two non-overlapping constructs, and there is no clear evidence of their interaction. They measure two different aspects of human-system interaction and therefore they could be jointly employed to better describe user experience.

Page layout

Part of the user interface design is affected by the quality of the page layout. For example, a designer may consider whether the site's page layout should remain consistent on different pages when designing the layout. Page pixel width may also be considered vital for aligning objects in the layout design. The most popular fixed-width websites generally have the same set width to match the current most popular browser window, at the current most popular screen resolution, on the current most popular monitor size. Most pages are also center-aligned for concerns of aesthetics on larger screens.

Fluid layouts increased in popularity around 2000 as an alternative to HTML-table-based layouts and grid-based design in both page layout design principle and in coding technique, but were very slow to be adopted. This was due to considerations of screen reading devices and varying windows sizes which designers have no control over. Accordingly, a design may be broken down into units (sidebars, content blocks, embedded advertising areas, navigation areas) that are sent to the browser and which will be fitted into the display window by the browser, as best it can. As the browser does recognize the details of the reader's screen (window size, font size relative to window etc.) the browser can make user-specific layout adjustments to fluid layouts, but not fixed-width layouts. Although such a display may often change the relative position of major content units, sidebars may be displaced below body text rather than to the side of it. This is a more flexible display than a hard-coded grid-based layout that doesn't fit the device window. In particular, the relative position of content blocks may change while leaving the content within the block unaffected. This also minimizes the user's need to horizontally scroll the page.


Responsive Web Design is a newer approach, based on CSS3, and a deeper level of per-device specification within the page's style sheet through an enhanced use of the CSS @media rule.

Posted 2016-03-05 05:01:35